GeoRAMAN School for students and young scientists June 15th, 2016

Stability and structure of high-pressure garnets: Raman approach

Anna Dymshits a.dymshits@gmail.com

High pressure phases in the mantle

Harte, 2010

Garnet is one of the most abundant mineral in the upper mantle and transition zone

Garnet (+ majorite)
up to 40 vol.% of peridotitic lithology
up to 70 vol.% of eclogitic lithology

Dissolution of majoritic garnet

Harte, 2010 Mineralogical Magazine

Majorite Mg₃(Mg,Si)Si₃O₁₂ Mg₄Si₄O₁₂

Majoritic garnet $Mg_4Si_4O_{12} - M_3Al_2Si_3O_{12}$ (M = Mg, Fe, Ca)

- Isomorphic Na admixture
- Na₂MgSi₅O₁₂ Na-majorite

 With increasing pressure garnet becomes progressively enriched in majorite component (Akaogi, Akimoto, 1977)

Iskert et al., 2015

Iskert et al., 2015

Na-bearing majoritic garnets in nature

South Africa (Moore, Gurney, 1985; Stachel, 2001); Brazil (Harte, Cayzer 2007); Guinea (Stachel et al., 2000), Russia (Sobolev et al., 1997; 2004 Shatskii et al., 2010); China (Wang et al., 2000); Canada (Davies et al., 2004; Pokhilenko et al., 2004)

Compositions of Na-rich majoritic garnets

Empirical geobarometers:

Collerson et al., 2010

Kiseeva et al., 2016

Wijbrans et al., 2016

Dymshits et al., 2015

Na-bearing pyroxene (Na-Px) Na_{0.5}MgSi_{2.5}O₆

- 1. Low pressure modification of Namajorite
- 2. Si occupies both tetrahedral and octahedral positions
- 3. Solid solutions were found in nature as inclusions in diamond (Pla Cid et al., 2014; Harte and Hudson 2013)
- 4. The formation pressure of such alkalirich inclusion can be estimated based on Na-px-Na-maj transition

How to study phase transitions at high pressures and high temperatures?

In situ X-ray diffraction experiments

SPring-8 synchrotron radiation facility (Hyogo, Japan), using a 1500-tons and 700-tons Kawaitype multi-anvil apparatus

Furnace assembly for experiments

When a phase transition point is reached

Garnet stability field

Garnet stability field

Garnet + pyroxene stability field

How to obtain the boundary

Run no.	V_{Au} (Å ³)	P _{Au} (GPa)	P _{Au} (GPa)	T(K)	X-ray observation
S2683	65.10(3)	14.4(1)	14.4 (1)	1,273	Na-px growth from starting material
S2683	65.15(4)	15.6(1)	15.5 (2)	1,473	Na-px → Na-maj growth after 10 min of annealing Na-maj only
S2683	65.78(2)	15.0(1)	14.9 (1)	1,673	Na-maj → Na-px growth
S2683	65.29(3)	15.8(1)	15.6 (1)	1,573	Na-px → Na-maj growth
S2683	65.59(3)	14.2(1)	14.1 (2)	1,473	Na-maj → Na-px growth
P187	64.96(4)	14.8(1)	14.6 (1)	1,273	Na-maj growth from starting material
P187	65.55(5)	14.4(2)	14.2 (2)	1,473	Na-maj → Na-px growth
P210	64.62(4)	15.9(1)	15.7 (1)	1,273	Na-maj growth from starting material
P210	66.51(5)	15.1(1)	15.1 (2)	1,973	Na-maj → Na-px growth
P210	65.67(3)	16.0(1)	16.0 (2)	1,773	Na-px → Na-maj growth

How to obtain the boundary

At low pressures **Na-maj** transforms to **Na-px**

The phase boundary Na-px /Na-maj

P(GPa) = 12.39 + 0.0018T(K).

Key:

■ Na-px

Na-px + Na-mai

■ Na-maj

■ Na-maj + Na-px growth

■Na-maj + Na-px

P-T diagram of Na-px/Na-maj

The phase boundary Na-px /Na-maj

P(GPa) = 12.39 + 0.0018T(K).

Ab initio:

Vinograd et al., 2011

Quenched Experiments:

Dymshits et al., 2010

Majorite and Sodium-majorite systems

Implication to natural majoritic samples

Na-rich Grt inclusion (China).

72 mol % Mg-maj – 18 mol % Na-maj (Wang and Sueno, 1996)

Minimum pressure – 15.5 GPa

Na-rich Grt (?) inclusion (Brazil).

Highest possible Si excess (4.98 f.u.) (Pla Cid et al., 2014)

Minimum pressure – 15.2 GPa

Diagnostic for mineral inclusions

X-ray diffraction

2000 - 1500 - OM1 - OM2 - OM3 - OM3 - OM3 - OM3

XRD patterns for three white inclusions from Allende. Menzies et al., 2003

Raman spectroscopy

http://enspectr.com/rammics-m532/

Raman spectrum of Na-Px

Raman spectra of clinopyroxenes in the jadeite-NaPx system (Yang et al., 2009)

Raman spectrum of Na-Maj

Prp from the RRUFF database (http://rruff.info/R080060)

Prp—Na-maj solid solution (our data)

Na-majorite (our data)

Li-majorite $(Li_2Mg)Si_2(SiO_4)_3$ (Yang et al., 2009)

Tetragonal space group I4₁/acd (Bindi et al., 2011)

Cubic space group *la3d* (Yang et al., 2009)

Transformation from cubic to tetragonal

Variations of unit cell parameters as a function of composition for solid solutions

Dymshits et al., 2013

Mineral diagnostic and pressure estimation

Barometer for majoritic garnets

Akaogi and Akimoto (1979)

Empirical linear barometer based on Si and Al+Cr exchange

Keshav and Sen (2001)

Barometer based on experimental study of ultrabasic garnets (Irifune et al., 1987)

Stachel (2001)

Barometer for majoritic garnets

Black stars - Si in f.u. in the garnets from Na-free systems (Gasparik 1992)

White stars - Si in f.u. in the garnets from Na-bearing systems (Dymshits et al. 2013)

Remember before you are going to create a new barometer

- Good barometer = pressure dependent reaction (big volume effect of reaction)
- 2. Barometer is an exchange reaction (for example $Px \leftrightarrow Grt$)
- 3. Majorite barometer can be used up to 16.5 GPa (even for Na-free system)

Equations of State

An Equation of State (EoS) = relation among V, P and T of a substance.

A **polynomial fit** of the measured P-V-T relation **is good for interpolation** of the experimental data

But a **polynomial** relation **can produce physically unacceptable behavior** on extrapolation beyond the range of experimental data.

Therefore, the experimental data need to be fitted by equations that have justifiable theoretical basis.

The ideal gas equation

PV = nRT

is the simplest example of such an equation.

Contents lists available at ScienceDirect

Physics of the Earth and Planetary Interiors

journal homepage: www.elsevier.com/locate/pepi

P-V-T equation of state of Na-majorite to 21 GPa and 1673 K

Anna M. Dymshits ^{a,b,*}, Konstantin D. Litasov ^{a,b}, Anton Shatskiy ^{a,b}, Igor S. Sharygin ^{a,b}, Eiji Ohtani ^c, Akio Suzuki ^c, Nikolay P. Pokhilenko ^a, Kenichi Funakoshi ^d

We have obtained the PVT equation of state of Na-majorite up to 21 GPa at high temperatures.

Na-majorite is the phase with the highest value of the bulk modulus among garnets

Thermal Equation of State of NaMg_{0.5}Si_{2.5}O₆ and New Data on the Compressibility of Clinopyroxenes

A. M. Dymshits^{a, b}, I. S. Sharygin^{a, b}, I. V. Podborodnikov^{a, b}, K. D. Litasov^{a, b}, A. F. Shats^kita, b. F. Otanic and Academician D. Vu. Pushcharovskii^d

Despite the small volume of the cell, **Na-pyroxene** has a sufficiently **high bulk modulus**

Leonid Perchuk, an outstanding Russian petrologist and mineralogist.

November 1933 – June 2009

It took Perchuk five years to develop ideas first formulated in his work into one of the most fruitful avenues of research in modern petrology: mineralogical geothermobarometry underlain by thermodynamic laws governing the distributions of isomorphic components between coexisting minerals.

Thank you for attention!

V.S. Sobolev Institute of Geology and Mineralogy

