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Diamond anvil cell DAC

DAC cells, loaded with one or several 
screws:
- cell with one screw;
- cell with three screws;
- cell with lever arm and one screw.

Scheme of DAC: А-solid supports,
В-anvils, С- gasket
.



• Raman spectrometers were used:
• Dilor OMARS 89, 
• Horiba Jobin Yvon LabRam-HR800  and  T64000,
• Spex Triplemate, Renishow Model 2000 RS

• Suitable gasket materials are hardened stainless-steel, 
tungsten, rhenium, inconel nickel alloy etc. 

• Medium:  alcohol (methanol/ ethanol 4/1), water, KBr, 
glycerol  etc.

• P-indicators: ruby (R1 and R2 lines), Sm-borate



Fig. Scheme of Raman spectrometer (Dilor OMARS 89)

Лазер

ПредмонохроматорСпектрограф

Детектор

Макро-ящик

Микроскоп

G1G2

G3

1

2

3

4
5

6
78

9

10

11

12

13
14

15

20

S3 S2

S1

16

17
18
19

21

22
23

24
25

9



Horiba JobinYvon T64000
Raman spectrometer 



• Horiba JobinYvon LabRam HR800 Raman 
spectrometer with DAC (IGM)



DAC at high Р-Т:  
Raman equipment Horiba Jobin Yvon T64000 spectrometer with Olympus BX41 

microscope with attached heated cell HT-DAC, EasyLab μScope .



Minerals at high pressure

• Using Raman spectroscopy in DAC-diamond anvil cell, several minerals 
were investigated at high P and room T:

• 1. Natrolite [20] 7. Fluorapatite [20]
• 2. Thomsonite [13] 8. ОН-apophyllite [7]
• 3. Scolecite [13] 9. F- apophyllite [7]
• 4. Zeolite NaА [15] 10. Thaumasite [28]
• 5. Lawsonite [19] 11. Datolite [8]
• 6. Н2О-cordierite [14] 12-13. Dehydrated and 

Hydrated analcimes
– 14. Parasibirskite [29]; 15 Chibaite [25].



• Dependences ν(P) of stretching modes versus pressure can be estimated from 
potential model (Sherman, 1982) [18]:

• U(r)= A – Br -n + Cr -m,
• where A, B, C, n (in power), m (in power) – constants, r – inter-atomic 

distance.
• Effective force constant depends on r with rate:  dk/dr = –(n + m + 3)k0/r0,
• where k0, r0 – constants are found at 0-pressure.
• Hence, for materials with Lennard-Jones potential  (n = 6, m = 12):
• dk/k0 = –21 dr/r0, 
• that means the increase of force constant 21% at the decrease of inter-atomic 

distance 1%
• In alkali halides for ionic potential of 1-9 type (n = 1, m = 9):  
• dk/k0 = –13 dr/r0
• that means the increase of force constant 13% at the decrease of inter-atomic 

distance 1%.



• Using the noted potential, the band frequency versus P can be estimated by 
complex formula (Sherman, 1982) [18]. From that, hence, the dependence ν(P) 
is linear at small P and then ν(P) is nonlinear at large P with decreasing of the 
slope  dν/dP.

• At zero pressure, the slope  dν/dP:
• (dν/dP)0 = ν0 (n+m+3)/6K0,

• where  K0 is the bulk modulus, r0 and ν0 at P=0.  Curvature of the P-
dependence of ν(P) is expressed: 

• (d2ν/dP2)0 = –ν0 (m2 + 14m + 14n + 4mn + n2 + 29)/36(K0)2.



Fig. Crystal structure of initial 
phase of natrolite Na2Al2Si3O10 
2H2O. Strong mode at 443 cm-1

Fig. Baric dependence of wavenumber
of natrolite Raman bands. Amorphization
at 9 GPa and partial reconstruction of 
crystalline structure after decompression..

Hydrated NATROLITE



Hydrated and overhydrated natrolite at high pressure
(Raman spectra with increasing P)

Hydrated natrolite starting 
from initial phase

Overhydrated natrolite
starting from initial phase



Overhydrated zeolites
Earlier data on overhydration of zeolites are presented in ref. [10-12,16].

Hydrated and overhydrated zeolite natrolite at high pressure. Our data [20].
Baric dependence of wavenumbers of the Raman bands

Hydrated                                      Overhydrated
Pressure (GPa)



Natrolite
Reversibility of amorphization at compression up to 7.7 GPa
Irreversibility of amorphization at compression up to ~9 GPa.

• Структура натролита. 
• Мода при 443 1/см.

Raman spectra of natrolite 
Na2Al2Si3O10

Initial crystalline structure of 
natrolite Na2Al2Si3O10 2H2O.

Mode vibration at 534 cm-1.



Overhydrated zeolite scolecite at high pressure 
(Raman spectra with increasing P). Our data [13].
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Overhydrated zeolite thomsonite at high pressure 
(Raman spectra with increasing P). Our data [13].
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Ionic conductivity of hydrated 
zeolites: LiA, NaA and KA

Ionic conductivity of overhydrated zeolite NaA



NaA overhydrated zeolite:
ionic conduction (our data, Goryainov et al., Micropor. Mesopor. Mater. 2013 

[15]) and calculated structure (Peral, Iniguez, Phys. Rev. Lett. 2006.)



Fig. NaA zeolite XRD: initial (lower) and overhydrated
(upper) zeolite, proved the conservation of partly 

overhydrated state for 12 h.



Н2О-cordierite (Altai mountains) 
Na0.07(Mg1.57Fe0.36Mn0.07) [Al3.96Fe0.06Si4.98O18]*0.45H2O

Sample compressed in water. Raman data [14].



Lawsonite CaAl2Si2O7(OH)2∗H2O compressed in water and alcohol. X-ray 
diffraction [19]
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Compressibility of lawsonite measured with 
synchrotron X-ray diffraction. 1- data of Daniel et al. 
(2000) [27] (black squares), compression in alcohol; 2-
our data [19] (black circles), compression in water with 
alcohol admixture (water/ethanol 9/1). Lines are the 
approximations of the data.
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Lawsonite CaAl2Si2O7(OH)2∗H2O compressed in water and alcohol. 
Raman and X-ray diffraction data 2009 [19].

Fig. Pressure dependence of wavenumbers of lawsonite CaAl2Si2O7(OH)2∗H2O Raman 
bands at 566 (a) and 941 cm–1 (b). Lawsonite crystals are compressed in water (circles) 
and methanol-ethanol 4:1 medium (squares). Linear approximation of experimental points 
for the last medium is plotted.



F-apatite compressed in water.
Raman data [20].



F-apophyllite KCa4Si8O20(F, OH)·8H2O compressed in alcohol. 
Raman data (Goryainov et al., J. Raman Spec. 2012) [7].



• Raman method at high P-T conditions

• Minerals: wairakite, dawsonite, talc and 
thaumasite



Fig. P-T phase diagram of serpentines at subduction conditions [9,24].



Talc – TAP transformation at high P-T. Our data [24].



Talc – TAP 
transformation [24].



Wairakite zeolite and OH-carbonate dawsonite at high P-T [26].



Figure 1. (a) The idealized crystal structure of thaumasite Ca3Si(OH)6(SO4)(CO3)*12H2O at room 
conditions. Groups of thaumasite Ca, SiO6, SO4, CO3 and H2O, where SiO6 polyhedron is a part of 
Si(OH)6, are plotted with CrystalMaker software.
(b) View of crystalline thaumasite I at water-alcohol pressure of 0.33 GPa (size of 94x170 μm2 along xz). 
(c) View of the same crystalline phase-II thaumasite block at water-alcohol pressure of 4.6 GPa
(Goryainov, J. Raman Spec. 2016) [28].
* Previous data on thaumasite are available in ref. [1-6].

Structure of 
thaumasite



Figure. In-situ and ex-situ Raman spectra 
of  thaumasite compressed in water at 

high P-T



– Remarks on the P-T study of thaumasite
– In the present Raman study [28], thaumasite samples were compressed in 

distilled water, alcohol-water and KBr media at high pressures up to ~7 
GPa: several phase transformations were identified. In samples 
compressed in alcohol-water, the wavemunbers of intense Raman bands of 
S-O and С-О symmetric stretching vibrations at 991 and 1074 cm–1 
proved to exhibit similar dependences on P: during first transition I→II at 
4.4 GPa, the wavenumbers of both bands exhibited downward jump; at 
second transition II→III, which occurred at 4.9 GPa, each band split in 
doublet and, then at third transition III→IV at 5.4 GPa each doublet band 
transformed in singlet. In KBr medium, Raman bands of thaumasite
showed similar (as at compression in alcohol-water) dependences on P.

– Transitions are assumed to be polymorphic: no noticeable overhydration
in thaumasite compressed in water-alcohol occurred. In phase IV, gradual 
widening and weakening of each band were observed that is associated 
with amorphization. 

– Considerable hysteresis was observed at thaumasite decompression. No 
overhydration of thaumasite was observed.

– Decomposition of thaumasite compressed in water is observed at 300 C, 
~5 GPa. It transforms to aragonite + gypsum + (X-silicate)  + fluid.

– After this HP-HT treatment, there is also remnant crystalline thaumasite
having partially disordered structure.



• CONCLUSION
• Method of in-situ Raman spectroscopy is effective tool to study the 

processes in minerals at high P:
• - determination of the P-range of crystalline stability; polymorphic 

transitions;
• - overhydration-hydration-dehydration at compression in water-

containing medium;
• - disordering and amorphization.
• Method at high P-T conditions:
• - dissolution of the crystals;
• - recrystallization of initial phase and growth of new crystalline 

phases;
• - extraction of volatile components; 
• - large variety of other processes.
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