

XIIth International GeoRaman Conference VIIIth International Siberian Early Career GeoScientists Conference June 14–15, 2016, Novosibirsk, Russia

RAMAN STUDY OF MECHANICAL STRESSES IN CRYSTALS

Dr. Pavel Zelenovskiy

Ural Federal University, Ekaterinburg, Russia

June 14, 2016

- External forces lead to crystal strains –
 variations of its shape and volume
- The simplest strains
 - Tension and compression
 - Relative elongation
- Elastic forces
 - Mechanical stress
 - Proportional to strain
 - Elastic constants
 - Compliance constants

$$\varepsilon = \frac{l - l_0}{l_0}$$

 l_0 – length before tension l – length after tension

$$\sigma = \frac{F}{S} = C\varepsilon$$

F – elastic force S – area of section

$$\varepsilon = S\sigma$$

Second rank tensors

$$oldsymbol{arepsilon} oldsymbol{arepsilon} = egin{bmatrix} arepsilon_{11} & arepsilon_{12} & arepsilon_{13} \ arepsilon_{21} & arepsilon_{22} & arepsilon_{23} \ arepsilon_{31} & arepsilon_{32} & arepsilon_{33} \end{bmatrix}$$

$$oldsymbol{\sigma} = egin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \ \sigma_{21} & \sigma_{22} & \sigma_{23} \ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$

6 independent components

$$\begin{split} \mathcal{E}_{21} &= \mathcal{E}_{12} \\ \mathcal{E}_{31} &= \mathcal{E}_{13} \Rightarrow \mathcal{E}_{11}, \, \mathcal{E}_{22}, \, \mathcal{E}_{33}, \, \mathcal{E}_{12}, \, \mathcal{E}_{13}, \, \mathcal{E}_{23} \\ \mathcal{E}_{32} &= \mathcal{E}_{23} \\ & \sigma_{21} = \sigma_{12} \\ & \sigma_{31} = \sigma_{13} \Rightarrow \sigma_{11}, \, \sigma_{22}, \, \sigma_{33}, \, \sigma_{12}, \, \sigma_{13}, \, \sigma_{23} \\ & \sigma_{32} &= \sigma_{23} \end{split}$$

Uniaxial stress

$$\mathbf{\sigma} = \begin{bmatrix} \sigma & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Biaxial stress

$$\mathbf{\sigma} = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Shear stress

$$\mathbf{\sigma} = \begin{bmatrix} 0 & \sigma & 0 \\ \sigma & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Hydrostatic pressure

$$\mathbf{\sigma} = \begin{bmatrix} -p & 0 & 0 \\ 0 & -p & 0 \\ 0 & 0 & -p \end{bmatrix}$$

- Crystal lattice defects
 - Inclusions
 - Dislocations
 - Twin and domain walls
- External pressure/temperature
 - Pressure-induced phase transitions
 - Residual mechanical stresses
- Indicator of local lattice distortions and/or preceding pressure exposure

Experimental methods

 High-Resolution Transmission Electron Microscopy

Spatial resolution0.1-0.2 nm

Samples thickness below 50 nm

X-Ray Diffraction

– Spatial resolution10 μm

Strain accuracy
10⁻⁵

Electron Backscatter Diffraction

Spatial resolution 100 nm

Strain accuracy
 10⁻⁴

Raman Spectroscopy

- Spatial resolution $250 \text{ nm} - 1 \mu \text{m}$

- Strain accuracy 10^{-3} - 10^{-4}

Outline

- Stress effect on Raman spectrum
 - Qualitative approach
 - Group-theoretical analysis
 - Example. Rutile
 - Quantitative approach
 - Secular equation
 - Example. Silicon
- Examples
 - Quartz particles in porcelain ceramic
 - Graphene at the silicon grating

STRESS EFFECT ON RAMAN SPECTRUM **QUALITATIVE APPROACH**

Qualitative approach

- Raman spectrum strong correlation with structure and symmetry of the crystal
- Group-theoretical analysis
 - Number of vibrations
 - Symmetry of vibrations
 - Polarization activity
- Input data
 - Initial crystal symmetry
 - Symmetry of the stress
 - Correlation tables

Qualitative approach

Uniaxial mechanical stress

 $D_{\infty h}$

Initial point group of the crystal

 G_0

Symmetry reduction

- G_1
- Compatibility relations → Possible variation of vibration spectrum
- Curie Principle
 - $-G_1$ group contains symmetry elements that are common for group G_0 and for group of the stress
 - compare symmetry elements of G_0 and $D_{\infty h}$

- Rutile TiO₂
- Unstressed crystal
 - Tetragonal structure
 - $-D_{4h}$ (P4/mmm)
 - 15 optical modes

$$-\Gamma = A_{1g} + B_{1g} + B_{2g} + E_{g}$$
$$+ A_{2u} + 3E_{u} + A_{2g} + 2B_{1u}$$

- Raman active:

$$A_{1g}$$
, B_{1g} , B_{2g} and E_g

- IR active: A_{2u} and $3E_u$
- Forbidden: A_{2g} and $2B_{1u}$

- Stress along a-axis
- Common symmetry elements for D_{4h} and $D_{\infty h}$
 - -E, C_2^z , $2C_2'$, i, σ_h , $2\sigma_v$
 - Point group D_{2h}
- Correlation table (Bilbao Crystallographic Server)

D_{4h}	A_{1g}	A_{1u}	A_{2g}	A_{2u}	B_{1g}	\boldsymbol{B}_{1u}	$oldsymbol{B}_{2g}$	B_{2u}	$\boldsymbol{E}_{oldsymbol{g}}$	$\boldsymbol{E}_{\boldsymbol{u}}$
D_{2h}	A_g	A_u	B_{1g}	B_{1u}	B_{1g}	\boldsymbol{B}_{1u}	A_g	A_u	$B_{2g} + B_{3g}$	$B_{2u}+B_{3u}$

Stressed crystal

$$-\Gamma = 2A_g + 2B_{1g} + B_{2g} + B_{3g} + 2A_u + B_{1u} + 3B_{2u} + 3B_{3u}$$

- Raman active: $2A_g$, $2B_{1g}$, B_{2g} , B_{3g}
- IR active: B_{1u} , $3B_{2u}$, $3B_{3u}$
- Forbidden: $2A_u$

STRESS EFFECT ON RAMAN SPECTRUM **QUANTITATIVE APPROACH**

Quantitative approach

Dynamic equation

$$\left[\mathbf{K} - \omega_r^2 \mathbf{M}\right] \vec{u}_r = 0$$

K – force constant matrix

M – mass matrix

 ω_r - frequency of $r^{\rm th}$ vibrational mode

 \vec{u}_r – relative atomic displacement during r^{th} mode

- Matrix K
 - depends on average atomic distances
 - sensitive to stress/strain state of the crystal
- For strained crystal

$$\left[\mathbf{K}^{(\varepsilon)} - \omega_r^2 \mathbf{M}\right] \vec{u}_r = 0$$

Quantitative approach

For low strains

$$K_{ij}^{(arepsilon)} = K_{ij}^{0} + \sum_{k,l} \left(\frac{\partial K_{ij}}{\partial arepsilon_{kl}} \right) arepsilon_{kl} = K_{ij}^{0} + \sum_{k,l} K_{ijkl}^{(arepsilon)} arepsilon_{kl}$$

- $-K_{ij}^0 = \omega_0^2 \delta_{ij}$
- $-\omega_0$ mode frequency without stress/strain
- $K_{ijkl}^{(\varepsilon)}$ phonon deformation potentials
 - 4th rank tensor
 - structure and number of independent components is determined by the crystal symmetry

Crystals with diamond structure (Si)

Tensor $K_{ijkl}^{(\varepsilon)}$ has only three independent components: p, q, r

Secular equation

$$\begin{vmatrix} p\varepsilon_{11} + q(\varepsilon_{22} + \varepsilon_{33}) - \lambda & 2r\varepsilon_{12} & 2r\varepsilon_{13} \\ 2r\varepsilon_{12} & p\varepsilon_{22} + q(\varepsilon_{33} + \varepsilon_{11}) - \lambda & 2r\varepsilon_{23} \\ 2r\varepsilon_{13} & 2r\varepsilon_{23} & p\varepsilon_{33} + q(\varepsilon_{11} + \varepsilon_{22}) - \lambda \end{vmatrix}$$

• Eigenvalues:

$$\lambda_j = \omega_j^2 - \omega_0^2$$

• Frequency shift: $\Delta \omega_j \approx \frac{\lambda_j}{2\omega_{j0}}$

- Unstressed Si crystal
 - $-\lambda_1 = \lambda_2 = \lambda_3$
 - 3-fold degeneracy mode
 - $-\omega_0 = 520 \text{ cm}^{-1}$
- For uniaxial stress σ along [100] direction

$$\varepsilon_{11} = S_{11}\sigma$$

$$\varepsilon_{22} = S_{12}\sigma$$

$$\varepsilon_{11} = S_{11}\sigma$$
 $\varepsilon_{22} = S_{12}\sigma$ $\varepsilon_{33} = S_{12}\sigma$

Therefore frequency shift

$$\Delta \omega_{1} = \frac{\lambda_{1}}{2\omega_{0}} = \frac{1}{2\omega_{0}} [pS_{11} + 2qS_{12}]\sigma$$

1-fold degeneracy mode

$$\Delta\omega_{2} = \frac{\lambda_{2}}{2\omega_{0}} = \frac{1}{2\omega_{0}} \left[pS_{12} + q(S_{11} + S_{12}) \right] \sigma$$

$$\Delta\omega_{3} = \frac{\lambda_{3}}{2\omega_{0}} = \frac{1}{2\omega_{0}} \left[pS_{12} + q(S_{11} + S_{12}) \right] \sigma$$

2-fold degeneracy mode

• For biaxial stress in (110) plane with stress components σ_{11} and σ_{22}

$$\Delta\omega_3 = \frac{\sigma_{11} + \sigma_{22}}{2\omega_0} \left[pS_{12} + q(S_{11} + S_{12}) \right]$$

- For Si crystal
 - Compressive stress → increase of Raman frequency
 - Tensile stress → decrease of Raman frequency

EXAMPLES

QUARTZ PARTICLES IN PORCELAIN CERAMIC

- Porcelain ceramic = glass matrix + crystalline phases
- Quartz is the most abundant crystalline phase
- Quartz particles reinforce the ceramic
 - Higher coefficient of thermal expansion
 - Strong compressive stresses on matrix
 - Strength improvements of the ceramic
- Very high stresses can lead to cracks

Optical Microscopy

Position of A₁ line

EXAMPLES

GRAPHENE AT THE SILICON GRATING

Graphene

- Single layer of sp² bonded carbon atoms
- Basic structure for fullerenes, nanotubes and graphite
- Unique electrical, mechanical, optical and thermal properties

Raman Spectrum of Graphene

Main Raman lines:

- G-line (1580 cm⁻¹): in-plane vibrations of C-atoms
- D-line (1350 cm⁻¹): defect-activated breathing mode
- 2D-line (2692 cm⁻¹): 2nd-order scattering of D-line

- Number of layers
- Orientation of layers
- Defects
- Mechanical stresses
- Doping and functionalization
- Electrical transport
- Heat transport
- Magnetic properties

For details: publications of **Andrea C. Ferrari** and **Mildred S. Dresselhaus**

Number of layers (2D-line)

- Shape changes:
 - SLG Single line
 - BLG 4 lines
 - Graphite 2 lines
- Weak difference in shape for graphene with more than 5 layers

Number of layers (C-line)

- New line corresponding to shear vibrations of layers
- Position depends on number of layers

Defects

- Defect-activated D-line
- Satisfy momentum conservation law
- Defect characterization by ratio I_D/I_G
- $-L_D$ average distance between defects

High concentration

$$\frac{I_D}{I_G} = C'(\lambda)L_D^2$$

Maximum: No additional contribution from new defects

M.M. Lucchese, F. Stavale et al., Carbon 45, 1592 (2010)

Mechanical strains (G-line)

- Splitting into G⁻ and G⁺
 under uniaxial strain
- Linear position shift:
 - Tension → Phonon softening
 - Compression → Phonon hardening

Mechanical strains (2D-line)

- Linear position shift
- No splitting

T. M. G. Mohiuddin et al. Phys. Rev. B. 79, 205433 (2009)

Graphene at the silicon grating

Scheme of the sample

Raman mapping (30mm×30mm)

- Mainly single-layer graphene
- Graphene flake at the surface
- Defects' distribution: holes, wrinkles
- − Periodical variations of P_G → Periodical stress

Nat. Comm. 6, 7572 (2015)

Graphene at the silicon grating

Position of G-line

$$\frac{\partial \omega_G}{\partial \varepsilon} = kE$$

- Linearly proportional to Young modulus $\partial \varepsilon$
- Young modulus E is the proportionality coefficient between axial stress σ and strain ε

$$\frac{\partial \omega_G}{\partial \varepsilon} = kE \quad \Rightarrow \quad \frac{1}{E} \frac{\partial \omega_G}{\partial \varepsilon} = \frac{\partial \omega_G}{\partial \sigma} = k \quad \Rightarrow \quad \Delta \omega = \omega - \omega_0 = k\sigma$$

Final expression

$$\sigma = \frac{E(\omega_{S} - \omega_{0})}{\partial \omega / \partial \varepsilon}$$

For CVD graphene

$$\frac{\partial \omega_G}{\partial \varepsilon} = +41.1 \,\text{cm}^{-1} / \%; \quad E = 1.1 \,\text{TPa}$$

Summary

- Raman spectroscopy can be used for characterization of mechanical stresses in crystals.
- Powerful tool provide quantitative and qualitative information about stresses.
- The method is based on simple theoretical background.
- We briefly looked the micro-Raman application for characterization of stresses in several systems.

Further reading

- S. Ganesan, A.A. Maradudin, and J. Oitmaa, A lattice theory of morphic effects in crystals of the diamond structure, Ann. Phys. **56**, 556 (1970)
- G. Pezzotti, Raman spectroscopy of piezoelectrics, J. Appl. Phys. **113**, 211301 (2013)
- M. Hanbucken, P. Muller, and R.B. Wehrspohn,
 Mechanical Stress on the Nanoscale (Wiley-VCH, 2011)
- A.C. Ferrari and D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nature Nanotechnology 8, 235 (2013)

THANK YOU FOR YOUR ATTENTION!